Algebraic Number Theory

Dr. Anuj Jakhar Lectures 13-16

Indian Institute of Technology Bhilai

anujjakhar@iitbhilai*.*ac*.*in

June 28, 2021

(ロ) (御) (君) (君) (君) 君 のぬの

- Let K be an algebraic number field. For a given rational prime p , our main aim will be to factorize $p\mathcal{O}_K$ as a product of prime ideals of \mathcal{O}_K .
- We shall first introduce the notions of ramification index and residual degree.
- For a non-zero prime ideal p of \mathcal{O}_K , $\mathcal{O}_K/\mathfrak{p}$ is a finite field in view of finite norm property. So $\mathfrak p$ contains a unique rational prime ρ which is the characteristic of the finite field $\mathcal{O}_K/\mathfrak{p}$; in this situation $\mathfrak p$ contains $p\mathcal{O}_K$ and hence p divides $p\mathcal{O}_K$.

Definition. Let $\mathfrak p$ be a prime ideal of $\mathcal O_K$ containing a prime p . If $\mathfrak p^e|p\mathcal O_K$ and $\mathfrak{p}^{e+1}\nmid\rho\mathcal{O}_K,$ then e is called the index of ramification of $\mathfrak p$ over ρ or the absolute index of ramification of p*.*

Definition. Let p be a non-zero prime ideal of \mathcal{O}_K , then $\mathcal{O}_K/\mathfrak{p}$ being a finite field has order a power p^f of a prime $p.$ The number f is called the residual degree of p*/*p or the absolute residual degree of p*.*

Definition. Let S be a ring having a subring R*.* Let A*,* B be ideals of R and S respectively such that $A \subseteq B$. We say that B lies above A or A lies below *B* if $B \cap R = A$.

When a prime ideal p of \mathcal{O}_K lies above $p\mathbb{Z}$, then by abuse of language we say that p lies over p or that p lies above p*.*

 QQ

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

The following theorem gives us information about the prime ideals of \mathcal{O}_K lying over a rational prime p when K*/*Q is a Galois extension.

Theorem 1. Let K/\mathbb{Q} be a finite Galois extension and p be a rational prime. Let $\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_r^{e_r}$ be the factorization of $\rho\mathcal{O}_K$ with $\mathfrak{p}_1,\ldots,\mathfrak{p}_r$ distinct prime ideals of $\mathcal{O}_{\bm{K}}$ and \bm{e}_1,\dots,\bm{e}_r positive. Then for any given pair $\mathfrak{p}_i,\mathfrak{p}_j,$ there exists $\sigma \in \text{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}_i) = \mathfrak{p}_j$.

We shall prove the following more general theorem.

Theorem 2. Let R be an integrally closed domain with quotient field L and L' be a finite Galois extension of L. Let R' be the integral closure of R in L'. Let p' , q' be maximal ideals of R' lying over a maximal ideal p of R . Then there exists $\sigma \in \text{Gal}(L'/L)$ such that $\sigma(\mathfrak{p}') = \mathfrak{q}'.$

 QQ

イロト イ押ト イヨト イヨト

Theorem 3. Let K/\mathbb{Q} , $p\mathcal{O}_K = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ be as in Theorem **[??](#page-0-1)**. Let f_i denote the residual degree of \mathfrak{p}_i/p . Then $e_i = e_1$ and $f_i = f_1$ for $2 \le i \le r$.

We establish an equality which relates the indices of ramification and the residual degrees of various prime ideals of \mathcal{O}_K lying over p with the degree of K*/*Q.

Fundamental Equality. Let K/\mathbb{Q} be an extension of degree *n* and *p* be a rational prime. Let $\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_r^{e_r}$ be the factorisation of $\rho\mathcal{O}_K$ as a product of powers of distinct prime ideals of \mathcal{O}_K and f_i denote the residual degree of pi*/*p*.* Then

$$
\sum_{i=1}^r e_i f_i = n = [K:\mathbb{Q}].
$$

 QQ

イロト イ押ト イヨト イヨト

The following simple result is sometimes useful for computung index of ramification and residual degree.

Theorem 4. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree *n*, where *θ* is an algebraic integer. If the minimal polynomial of θ over $\mathbb Q$ is an Eisenstein polynomial with respect to a rational prime p*,* then there exists exactly one prime ideal $\mathfrak p$ of $\mathcal O_{\mathcal K}$ which lies over p and $p\mathcal O_{\mathcal K}=\mathfrak p^n.$

Notation. Let p be a prime. For $f(X) \in \mathbb{Z}[X], \overline{f}(X)$ will denote the polynomial obtained by replacing each coefficient of $f(X)$ by its image under the canonical homomorphism from $\mathbb Z$ onto $\mathbb Z/p\mathbb Z$. $\overline{f}(X)$ will be called the reduction of $f(X)$ modulo p.

Dedekind's Theorem on splitting of primes. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree *n* with θ an algebraic integer. Let $F(X)$ be the minimal polynomial of θ over $\mathbb Q$ and p be a rational prime not dividing the index of $\mathbb{Z}[\theta]$ in $\mathcal{O}_K.$ Let $\overline{F}(X)=\overline{F}_1(X)^{e_1}\cdots\overline{F}_r(X)^{e_r}$ be the factorization of $\overline{F}(X)$ into powers of distinct irreducible polynomials over $\mathbb{Z}/p\mathbb{Z}$, where each $F_i(X) \in \mathbb{Z}[X]$ is monic. Then $\mathfrak{p}_i = \langle F_i(\theta), p \rangle$ for $1 \leq i \leq r$ are distinct prime ideals of \mathcal{O}_K and $p\mathcal{O}_K = \mathfrak{p}_1^{e_1}\cdots \mathfrak{p}_r^{e_r};$ moreover the residual degree of p_i/p is deg $F_i(X)$ for $1 \le i \le r$.

The following two lemmas are helpful in the proof of above theorem.

 QQ

イロト イ団ト イミト イヨト

Lemma 5. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree *n* with θ an algebraic integer. If a rational prime p does not divide $[O_K : \mathbb{Z}[\theta]]$, then the classes of $1,\theta,\ldots,\theta^{n-1}$ form a basis of $\mathcal{O}_\mathsf{K}/\mathsf{p}\mathcal{O}_\mathsf{K}$ as a vector space over Z*/*pZ*.*

It may be pointed out that the converse of the above lemma is also true which can be proved by retracing the steps of the proof.

Lemma 6. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree *n* with θ an algebraic integer. Let p be a rational prime not dividing $[O_K : \mathbb{Z}[\theta]]$. Let $G(X) \in \mathbb{Z}[X]$ be a polynomial whose reduction modulo p is irreducible over $\mathbb{Z}/p\mathbb{Z}$. Then the ideal generated by $G(\theta)$ and p in \mathcal{O}_K is a prime ideal of \mathcal{O}_K or it equals \mathcal{O}_K .

 QQ

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Remark.

We wish to point out that the converse of Theorem **[??](#page-0-1)** is also true. This was proved in 2008. It can be stated as follows:

Converse.. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree *n* with θ an algebraic integer having minimal polynomial $F(X)$ over $\mathbb Q$. For a given prime ρ , let $\overline{\digamma}(X)=\overline{\digamma}_1(X)^{\mathsf{e}_1}\cdots\overline{\digamma}_r(X)^{\mathsf{e}_r}$ be the factorization of the reduction of $F(X)$ modulo p into a product of powers of distinct irreducible polynomials over $\mathbb{Z}/p\mathbb{Z}$ with each $F_i(X) \in \mathbb{Z}[X]$ is monic. If pO_K has the analogous factorization into a product of powers of distinct prime ideals as $\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_r^{e_r},$ where $\mathfrak{p}_i=\langle F_i(\theta),\rho\rangle$ is prime ideal of $\mathcal{O}_\mathcal{K}$ having $\mathcal{N}(\mathfrak{p}_i)=\rho^{\deg \mathcal{F}_i}$ for $1\leq i\leq r,$ then ρ does not divide the index of $\theta.$

 QQ

The examples given below illustrate Dedekind's theorem on splitting of primes.

Example.

- Let $K = \mathbb{Q}(\theta)$ with θ a root of the polynomial $f(X) = X^4 + 8X + 8$.
- Note that the polynomial $f(X)$ is irreducible over $\mathbb Q$ in view of Eisenstein-Dumas Irreducibility Criterion.
- One can easily check that $D_{\mathsf{K}/\mathbb{Q}}(1,\theta,\theta^2,\theta^3) = 2^{12}\cdot$ 5, so 5 does not divide the index of *θ*.
- Here $f(X)$ factors as a product $(X-2)^2(X^2+4X+2)$ of powers of irreducible polynomials modulo 5. So by Dedekind's theorem, $5\mathcal{O}_K=\mathfrak{p}_5^2\mathfrak{p}_5'$ where $\mathfrak{p}_5=\langle 5, \theta-2\rangle$, $\mathfrak{p}_5'=\langle 5, \theta^2+4\theta+2\rangle$ are prime ideals of \mathcal{O}_K with $\mathcal{N}(\mathfrak{p}_5)=5$ and $\mathcal{N}(\mathfrak{p}'_5)=5^2.$

 η are

K ロ > K dj > K 글 > K 글 > H 글

we shall apply Dedekind's theorem on splitting of primes to describe splitting of primes in quadratic and cyclotomic fields. For this, we define the following notion.

Notation. Let p be an odd prime. For any integer a , the Legendre symbol $\begin{pmatrix} a \\ - \end{pmatrix}$ p \setminus is defined by

$$
\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } x^2 \equiv a \pmod{p} \text{ is solvable and } p \nmid a, \\ -1 & \text{if } x^2 \equiv a \pmod{p} \text{ is not solvable.} \end{cases}
$$

For $a \equiv 0$ or 1 (mod 4), the Kronecker symbol is given by

$$
\left(\frac{a}{2}\right) = \begin{cases}\n0 & \text{if } 4|a, \\
1 & \text{if } a \equiv 1 \text{ (mod 8)}, \\
-1 & \text{if } a \equiv 5 \text{ (mod 8)}.\n\end{cases}
$$

With the above notations, using Dedekind's theorem, we prove

Theorem 7. Let K be a quadratic field having discriminant D. Let p be any prime odd or even. Then the following hold:

\n- (i) If
$$
p|D
$$
, then $p\mathcal{O}_K = \mathfrak{p}^2$, \mathfrak{p} is a prime ideal of \mathcal{O}_K and $N(\mathfrak{p}) = p$.
\n- (ii) If $\left(\frac{D}{p}\right) = 1$, then $p\mathcal{O}_K = \mathfrak{p}\mathfrak{p}_1$, $\mathfrak{p} \neq \mathfrak{p}_1$ are prime ideals of \mathcal{O}_K and $N(\mathfrak{p}) = N(\mathfrak{p}_1) = p$.
\n- (iii) If $\left(\frac{D}{p}\right) = -1$, then $p\mathcal{O}_K = \mathfrak{p}$, \mathfrak{p} is a prime ideal of \mathcal{O}_K and $N(\mathfrak{p}) = p^2$.
\n

Definition. Let K be an algebraic number field. If there is a non-zero prime ideal ${\mathfrak p}$ of ${\mathcal O}_K$ such that ${\mathfrak p}^2$ divides $\rho{\mathcal O}_K,$ then ρ is said to be ramified in K otherwise, it is called unramified in K*.* So p is unramified in K if $p\mathcal{O}_K = \mathfrak{p}_1 \cdots \mathfrak{p}_m$, where \mathfrak{p}_i 's are distinct prime ideals of \mathcal{O}_K .

Definition. Let K be an algebraic number field of degree n. A prime p is said to be totally ramified in K if $p\mathcal{O}_K=\mathfrak{p}^n$ for some prime ideal $\mathfrak p$ of \mathcal{O}_K . A prime p is said to split completely in K if $p\mathcal{O}_K=\mathfrak{p}_1\cdots\mathfrak{p}_n,$ where \mathfrak{p}_i 's are distinct prime ideals of \mathcal{O}_K .

Remark. By the last theorem, wesee that a rational prime p is totally ramified in a quadratic field K with discriminant D if and only if p divides D. Similarly p splits completely in K if and only if $\Big(\dfrac{D}{p}\Big)$ $)= 1$ and p is unramified in K if and only if p does not divide D .

 QQ

イロメス 御き スミメス ミメー

We shall now discuss the splitting of a rational prime in a cyclotomic field for which the following lemma is needed.

Lemma 8. Let m ≥ 2 be an integer, *ζ* a primitive mth root of unity and $K = \mathbb{Q}(\zeta)$. Let p be a rational prime not dividing m. Then p does not divide DK*/*Q(1*, ζ, . . . , ζφ*(m)−¹)*.*

Definition. Let p be a prime and $m > 1$ be a number not divisible by p. If h is the smallest positive integer such that $p^h \equiv 1 \pmod{m}$, then h is called the order of p modulo m. In fact h is the order of $m\mathbb{Z}+p$ in the multiplicative group $(\mathbb{Z}/m\mathbb{Z})^{\times}$ of reduced residue classes modulo m.

 QQ

イロメス 御き スミメス ミメー

We first discuss the splitting of a prime p in the mth cyclotomic field when $p \nmid m$.

Theorem 8. Let m ≥ 2 be an integer, *ζ* a primitive mth root of unity and $K = \mathbb{Q}(\zeta)$. Let p be a rational prime not dividing m and having order h modulo *m*. Then $p\mathcal{O}_K = \mathfrak{p}_1 \cdots \mathfrak{p}_g$, where $g = \frac{\phi(m)}{h}$ $\frac{\partial f}{\partial h}$ and each prime ideal pⁱ has residual degree h*.*

For obtaining the splitting of rational primes p dividing m in the m th cyclotomic field, we shall use the following lemma.

Lemma 9. Let $\mathbb{Q} \subset K_1 \subset K$ be algebraic number fields. Let p be a prime number. Suppose that $p\mathcal{O}_{K_1}=\mathfrak{p}'_1\cdots\mathfrak{p}'_g,$ where $\mathfrak{p}'_1,\ldots,\mathfrak{p}'_g$ are distinct prime ideals of \mathcal{O}_{K_1} with $\mathcal{N}(\mathfrak{p}_i')=\rho^{f_i'}$. If $\mathfrak{p}_i'\mathcal{O}_K=\mathfrak{p}_i^{e_i}$ for $1\leq i\leq g$ with \mathfrak{p}_i an ideal of \mathcal{O}_K and if \sum g \mathcal{O}_K and the residual degree of \mathfrak{p}_i/ρ is f'_i for $1\leq i\leq g.$ $e_i f'_i = [K:\mathbb{Q}],$ then each \mathfrak{p}_i is a prime ideal of

Recall for the proof of next theorem. Two elements α , β of \mathcal{O}_K are said to be associates if there exists a unit ϵ of \mathcal{O}_K such that $\beta = \alpha \epsilon$. If ζ_0 is a primitive (p^r) th root of unity, p prime, then for any positive integer k not divisible by p , $1-\zeta_0^k$ and $1-\zeta_0$ are associates because each divides the other in the ring $\mathbb{Z}[\zeta_0]$ as $1-\zeta_0$ can also be written as $1-\zeta_0^{kl}$, where $kl \equiv 1 \pmod{p^r}$.

Theorem 10. Let $m = p^r m^r$ be an integer, where p is a prime number, $p \nmid m'$. Let ζ be a primitive mth root of unity. Then in the field $K = \mathbb{Q}(\zeta)$, $p\mathcal{O}_K = (\mathfrak{p}_1 \cdots \mathfrak{p}_g)^{\phi(p^r)}$, where $g = \frac{\phi(m^r)}{h}$ $\frac{m}{h}$ and h is the order of p modulo m'.

 QQ

We shall prove the following theorem whose converse is also true.

Theorem 11 (Dedekind's theorem). If a rational prime p is ramified in an algebraic number field K, then p divides d_K .

Exercises

- Find how the primes 5, 7 and 11 split in $\mathbb{Q}(\theta)$ where θ is a root of $x^3 - 18x - 6.$
- Find how the primes 2, 3 and 5 split in $\mathbb{Q}(\theta)$ where θ is a root of $x^3 - x - 1$.
- $\hat{\lambda}$, λ , λ .
Find how the primes 2, 3 and 5 splits in $\mathbb{Q}(\sqrt{2})$ 5)*.*
- Find all rational primes p that ramify in K together with their prime ideal factorizations in \mathcal{O}_K , when K is one of the following fields: $(a) Q(\sqrt[3]{6});$ (a) $\mathbb{Q}(\sqrt{6})$;
(b) $\mathbb{Q}(\sqrt[3]{20})$.
- Find how the primes 2*,* 3 and 5 split in Q(*ζ*) where *ζ* is a primitive 28th root of unity.
- Find how the prime 5 splits in $\mathbb{Q}(\zeta)$ where ζ is a primitive 27th root of unity.