Algebraic Number Theory

Dr. Anuj Jakhar Lectures 13-16

Indian Institute of Technology Bhilai anujjakhar@iitbhilai.ac.in

June 28, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Let K be an algebraic number field. For a given rational prime p, our main aim will be to factorize pO_K as a product of prime ideals of O_K.
- We shall first introduce the notions of ramification index and residual degree.
- For a non-zero prime ideal p of O_K, O_K/p is a finite field in view of finite norm property. So p contains a unique rational prime p which is the characteristic of the finite field O_K/p; in this situation p contains pO_K and hence p divides pO_K.

Definition. Let \mathfrak{p} be a prime ideal of \mathcal{O}_K containing a prime p. If $\mathfrak{p}^e | p \mathcal{O}_K$ and $\mathfrak{p}^{e+1} \nmid p \mathcal{O}_K$, then e is called the index of ramification of \mathfrak{p} over p or the absolute index of ramification of \mathfrak{p} .

Definition. Let \mathfrak{p} be a non-zero prime ideal of \mathcal{O}_K , then $\mathcal{O}_K/\mathfrak{p}$ being a finite field has order a power p^f of a prime p. The number f is called the residual degree of \mathfrak{p}/p or the absolute residual degree of \mathfrak{p} .

Definition. Let S be a ring having a subring R. Let A, B be ideals of R and S respectively such that $A \subseteq B$. We say that B lies above A or A lies below B if $B \cap R = A$.

When a prime ideal \mathfrak{p} of $\mathcal{O}_{\mathcal{K}}$ lies above $p\mathbb{Z}$, then by abuse of language we say that \mathfrak{p} lies over p or that \mathfrak{p} lies above p.

イロト 不得 トイヨト イヨト

The following theorem gives us information about the prime ideals of \mathcal{O}_K lying over a rational prime p when K/\mathbb{Q} is a Galois extension.

Theorem 1. Let K/\mathbb{Q} be a finite Galois extension and p be a rational prime. Let $\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ be the factorization of $p\mathcal{O}_K$ with $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ distinct prime ideals of \mathcal{O}_K and e_1, \ldots, e_r positive. Then for any given pair $\mathfrak{p}_i, \mathfrak{p}_j$, there exists $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma(\mathfrak{p}_i) = \mathfrak{p}_j$.

We shall prove the following more general theorem.

Theorem 2. Let R be an integrally closed domain with quotient field L and L' be a finite Galois extension of L. Let R' be the integral closure of R in L'. Let $\mathfrak{p}', \mathfrak{q}'$ be maximal ideals of R' lying over a maximal ideal \mathfrak{p} of R. Then there exists $\sigma \in \operatorname{Gal}(L'/L)$ such that $\sigma(\mathfrak{p}') = \mathfrak{q}'$.

ヘロア 人間 アメヨア 人口 ア

Theorem 3. Let K/\mathbb{Q} , $p\mathcal{O}_K = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ be as in Theorem ??. Let f_i denote the residual degree of \mathfrak{p}_i/p . Then $e_i = e_1$ and $f_i = f_1$ for $2 \le i \le r$.

We establish an equality which relates the indices of ramification and the residual degrees of various prime ideals of $\mathcal{O}_{\mathcal{K}}$ lying over p with the degree of \mathcal{K}/\mathbb{Q} .

Fundamental Equality. Let K/\mathbb{Q} be an extension of degree n and p be a rational prime. Let $\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ be the factorisation of $p\mathcal{O}_K$ as a product of powers of distinct prime ideals of \mathcal{O}_K and f_i denote the residual degree of \mathfrak{p}_i/p . Then

$$\sum_{i=1}^r e_i f_i = n = [K : \mathbb{Q}].$$

イロン イヨン イヨン

The following simple result is sometimes useful for computung index of ramification and residual degree.

Theorem 4. Let $\mathcal{K} = \mathbb{Q}(\theta)$ be an algebraic number field of degree *n*, where θ is an algebraic integer. If the minimal polynomial of θ over \mathbb{Q} is an Eisenstein polynomial with respect to a rational prime *p*, then there exists exactly one prime ideal \mathfrak{p} of $\mathcal{O}_{\mathcal{K}}$ which lies over *p* and $p\mathcal{O}_{\mathcal{K}} = \mathfrak{p}^n$.

Notation. Let p be a prime. For $f(X) \in \mathbb{Z}[X], \overline{f}(X)$ will denote the polynomial obtained by replacing each coefficient of f(X) by its image under the canonical homomorphism from \mathbb{Z} onto $\mathbb{Z}/p\mathbb{Z}$. $\overline{f}(X)$ will be called the reduction of f(X) modulo p.

Dedekind's Theorem on splitting of primes. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree n with θ an algebraic integer. Let F(X) be the minimal polynomial of θ over \mathbb{Q} and p be a rational prime not dividing the index of $\mathbb{Z}[\theta]$ in \mathcal{O}_K . Let $\overline{F}(X) = \overline{F}_1(X)^{e_1} \cdots \overline{F}_r(X)^{e_r}$ be the factorization of $\overline{F}(X)$ into powers of distinct irreducible polynomials over $\mathbb{Z}/p\mathbb{Z}$, where each $F_i(X) \in \mathbb{Z}[X]$ is monic. Then $\mathfrak{p}_i = \langle F_i(\theta), p \rangle$ for $1 \le i \le r$ are distinct prime ideals of \mathcal{O}_K and $p\mathcal{O}_K = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$; moreover the residual degree of \mathfrak{p}_i/p is deg $F_i(X)$ for $1 \le i \le r$.

The following two lemmas are helpful in the proof of above theorem.

イロト 不得 トイヨト イヨト

Lemma 5. Let $\mathcal{K} = \mathbb{Q}(\theta)$ be an algebraic number field of degree n with θ an algebraic integer. If a rational prime p does not divide $[\mathcal{O}_{\mathcal{K}} : \mathbb{Z}[\theta]]$, then the classes of $1, \theta, \ldots, \theta^{n-1}$ form a basis of $\mathcal{O}_{\mathcal{K}}/p\mathcal{O}_{\mathcal{K}}$ as a vector space over $\mathbb{Z}/p\mathbb{Z}$.

It may be pointed out that the converse of the above lemma is also true which can be proved by retracing the steps of the proof.

Lemma 6. Let $\mathcal{K} = \mathbb{Q}(\theta)$ be an algebraic number field of degree n with θ an algebraic integer. Let p be a rational prime not dividing $[\mathcal{O}_{\mathcal{K}} : \mathbb{Z}[\theta]]$. Let $G(X) \in \mathbb{Z}[X]$ be a polynomial whose reduction modulo p is irreducible over $\mathbb{Z}/p\mathbb{Z}$. Then the ideal generated by $G(\theta)$ and p in $\mathcal{O}_{\mathcal{K}}$ is a prime ideal of $\mathcal{O}_{\mathcal{K}}$ or it equals $\mathcal{O}_{\mathcal{K}}$.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Remark.

We wish to point out that the converse of Theorem **??** is also true. This was proved in 2008. It can be stated as follows:

Converse.. Let $K = \mathbb{Q}(\theta)$ be an algebraic number field of degree n with θ an algebraic integer having minimal polynomial F(X) over \mathbb{Q} . For a given prime p, let $\overline{F}(X) = \overline{F}_1(X)^{e_1} \cdots \overline{F}_r(X)^{e_r}$ be the factorization of the reduction of F(X) modulo p into a product of powers of distinct irreducible polynomials over $\mathbb{Z}/p\mathbb{Z}$ with each $F_i(X) \in \mathbb{Z}[X]$ is monic. If $p\mathcal{O}_K$ has the analogous factorization into a product of powers of distinct prime ideals as $\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$, where $\mathfrak{p}_i = \langle F_i(\theta), p \rangle$ is prime ideal of \mathcal{O}_K having $N(\mathfrak{p}_i) = p^{\deg F_i}$ for $1 \leq i \leq r$, then p does not divide the index of θ .

イロト 不得 トイヨト イヨト

The examples given below illustrate Dedekind's theorem on splitting of primes.

Example.

- Let $K = \mathbb{Q}(\theta)$ with θ a root of the polynomial $f(X) = X^4 + 8X + 8$.
- Note that the polynomial f(X) is irreducible over Q in view of Eisenstein-Dumas Irreducibility Criterion.
- One can easily check that $D_{K/\mathbb{Q}}(1, \theta, \theta^2, \theta^3) = 2^{12} \cdot 5$, so 5 does not divide the index of θ .
- Here f(X) factors as a product (X − 2)²(X² + 4X + 2) of powers of irreducible polynomials modulo 5. So by Dedekind's theorem, 5O_K = p²₅p'₅ where p₅ = (5, θ − 2), p'₅ = (5, θ² + 4θ + 2) are prime ideals of O_K with N(p₅) = 5 and N(p'₅) = 5².

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

we shall apply Dedekind's theorem on splitting of primes to describe splitting of primes in quadratic and cyclotomic fields. For this, we define the following notion.

Notation. Let *p* be an odd prime. For any integer *a*, the Legendre symbol $\left(\frac{a}{p}\right)$ is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p | a, \\ 1 & \text{if } x^2 \equiv a \pmod{p} \text{ is solvable and } p \nmid a, \\ -1 & \text{if } x^2 \equiv a \pmod{p} \text{ is not solvable.} \end{cases}$$

For $a \equiv 0$ or 1 (mod 4), the Kronecker symbol is given by

$$\begin{pmatrix} \frac{a}{2} \end{pmatrix} = \begin{cases} 0 & \text{if } 4|a, \\ 1 & \text{if } a \equiv 1 \pmod{8}, \\ -1 & \text{if } a \equiv 5 \pmod{8}. \end{cases}$$

With the above notations, using Dedekind's theorem, we prove

Theorem 7. Let K be a quadratic field having discriminant D. Let p be any prime odd or even. Then the following hold:

Definition. Let K be an algebraic number field. If there is a non-zero prime ideal \mathfrak{p} of \mathcal{O}_K such that \mathfrak{p}^2 divides $p\mathcal{O}_K$, then p is said to be ramified in K otherwise, it is called unramified in K. So p is unramified in K if $p\mathcal{O}_K = \mathfrak{p}_1 \cdots \mathfrak{p}_m$, where \mathfrak{p}_i 's are distinct prime ideals of \mathcal{O}_K .

Definition. Let *K* be an algebraic number field of degree *n*. A prime *p* is said to be totally ramified in *K* if $p\mathcal{O}_K = \mathfrak{p}^n$ for some prime ideal \mathfrak{p} of \mathcal{O}_K . A prime *p* is said to split completely in *K* if $p\mathcal{O}_K = \mathfrak{p}_1 \cdots \mathfrak{p}_n$, where \mathfrak{p}_i 's are distinct prime ideals of \mathcal{O}_K .

Remark. By the last theorem, we see that a rational prime p is totally ramified in a quadratic field K with discriminant D if and only if p divides D. Similarly p splits completely in K if and only if $\left(\frac{D}{p}\right) = 1$ and p is unramified in K if and only if p does not divide D.

ヘロア 人間 アメヨア 人口 ア

We shall now discuss the splitting of a rational prime in a cyclotomic field for which the following lemma is needed.

Lemma 8. Let $m \ge 2$ be an integer, ζ a primitive *m*th root of unity and $K = \mathbb{Q}(\zeta)$. Let *p* be a rational prime not dividing *m*. Then *p* does not divide $D_{K/\mathbb{Q}}(1, \zeta, \dots, \zeta^{\phi(m)-1})$.

Definition. Let p be a prime and $m \ge 1$ be a number not divisible by p. If h is the smallest positive integer such that $p^h \equiv 1 \pmod{m}$, then h is called the order of p modulo m. In fact h is the order of $m\mathbb{Z} + p$ in the multiplicative group $(\mathbb{Z}/m\mathbb{Z})^{\times}$ of reduced residue classes modulo m.

イロン イヨン イヨン

We first discuss the splitting of a prime p in the mth cyclotomic field when $p \nmid m$.

Theorem 8. Let $m \ge 2$ be an integer, ζ a primitive *m*th root of unity and $K = \mathbb{Q}(\zeta)$. Let *p* be a rational prime not dividing *m* and having order *h* modulo *m*. Then $p\mathcal{O}_K = \mathfrak{p}_1 \cdots \mathfrak{p}_g$, where $g = \frac{\phi(m)}{h}$ and each prime ideal \mathfrak{p}_i has residual degree *h*.

For obtaining the splitting of rational primes p dividing m in the mth cyclotomic field, we shall use the following lemma.

Lemma 9. Let $\mathbb{Q} \subseteq K_1 \subseteq K$ be algebraic number fields. Let p be a prime number. Suppose that $p\mathcal{O}_{K_1} = \mathfrak{p}'_1 \cdots \mathfrak{p}'_g$, where $\mathfrak{p}'_1, \ldots, \mathfrak{p}'_g$ are distinct prime ideals of \mathcal{O}_{K_1} with $N(\mathfrak{p}'_i) = p^{f'_i}$. If $\mathfrak{p}'_i\mathcal{O}_K = \mathfrak{p}^{\mathfrak{e}_i}_i$ for $1 \leq i \leq g$ with \mathfrak{p}_i an ideal of \mathcal{O}_K and if $\sum_{i=1}^g e_i f'_i = [K : \mathbb{Q}]$, then each \mathfrak{p}_i is a prime ideal of \mathcal{O}_K and the residual degree of \mathfrak{p}_i/p is f'_i for $1 \leq i \leq g$. Recall for the proof of next theorem. Two elements α, β of \mathcal{O}_K are said to be associates if there exists a unit ϵ of \mathcal{O}_K such that $\beta = \alpha \epsilon$. If ζ_0 is a primitive (p^r) th root of unity, p prime, then for any positive integer k not divisible by p, $1 - \zeta_0^k$ and $1 - \zeta_0$ are associates because each divides the other in the ring $\mathbb{Z}[\zeta_0]$ as $1 - \zeta_0$ can also be written as $1 - \zeta_0^{kl}$, where $kl \equiv 1 \pmod{p^r}$.

Theorem 10. Let $m = p^r m'$ be an integer, where p is a prime number, $p \nmid m'$. Let ζ be a primitive *m*th root of unity. Then in the field $\mathcal{K} = \mathbb{Q}(\zeta), \ p\mathcal{O}_{\mathcal{K}} = (\mathfrak{p}_1 \cdots \mathfrak{p}_g)^{\phi(p^r)}$, where $g = \frac{\phi(m')}{h}$ and h is the order of p modulo m'.

イロト イヨト イヨト イヨト 三日

We shall prove the following theorem whose converse is also true.

Theorem 11 (Dedekind's theorem). If a rational prime p is ramified in an algebraic number field K, then p divides d_K .

Exercises

- Find how the primes 5,7 and 11 split in $\mathbb{Q}(\theta)$ where θ is a root of $x^3 18x 6$.
- Find how the primes 2, 3 and 5 split in $\mathbb{Q}(\theta)$ where θ is a root of $x^3 x 1$.
- Find how the primes 2, 3 and 5 splits in $\mathbb{Q}(\sqrt{5})$.
- Find all rational primes p that ramify in K together with their prime ideal factorizations in O_K, when K is one of the following fields:
 (a) Q(³√6);
 (b) Q(³√20).
- Find how the primes 2, 3 and 5 split in $\mathbb{Q}(\zeta)$ where ζ is a primitive 28th root of unity.
- Find how the prime 5 splits in Q(ζ) where ζ is a primitive 27th root of unity.

< □ > < □ > < □ > < □ > < □ > < □ >